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1. INTRODUCTION

Channel flood routing has long been of vital concern to man as he has sought to predict
the characteristic features of a flood wave in his efforts to improve the transport of water
through man-made or natural waterways and to determine necessary actions to protect life and
property from the effects of flooding. Many channel routing models have been developed, and
those based on the complete one-dimensional hydrodynamic equations (Saint-Venant) have found
increasing use in the engineering community. Such dynamic channel routing models are based
entirely on deterministic considerations. The outcome of a deterministic model is largely
dependent on the accuracy of the model input, such as the specified hydraulic parameters within
the mathematical equations used by the model, as well as boundary and initial conditions which
need to be predetermined. Traditional deterministic methods cannot reflect the effects of
possible inaccuracies in the equations, parameters, and boundary and initial conditions. When
model results are applied to engineering practice, a margin of safety is often assigned to provide
some degree of protection against the unknown effects. On the other hand, statistical models
are receiving more attention because of their capability of reflecting the effects of uncertainties
in the accuracy of the mathematical model, hydraulic parameters, and boundary and initial
conditions. The Kalman filter is a statistical method that provides an updating technique to
improve the simulation of unsteady flows for real-time river flood forecasting.

The U.S. National Weather Service (NWS) has been developing a new dynamic channel
flood routing model (FLDWAV) to replace the popular DAMBRK and DWOPER dynamic
models. The FLDWAYV model has wide applicability and feasible computational requirements.
A recent enhancement to the FLDWAYV model is the addition of a stochastic real-time estimator
for optimal updating of the FLDWAYV model’s predictions using real-time observations of river
stages. In this paper, the technique of real-time dynamic flood routing using the NWS
FLDWAY model with Kalman filter updating is presented. The FLDWAV model is based on
implicit, nonlinear finite-difference approximations of the one-dimensional Saint-Venant
equations of unsteady flow. The stochastic estimator uses an extended Kalman filter to provide
optimal updating estimates. These are achieved by combining the predictions of the FLDWAV
model with real-time observations modified by the Kalman filter gain factor. An efficient
inverse matrix solution technique is used to determine the transition matrix in computing the
Kalman filter gain factor. Selected applications of real-time estimation with the enhanced
FLDWAYV model, spanning a wide range of types of flood waves, are presented. Preliminary



results indicate that significant improvement in flood routing predictions of certain types of flood
waves are obtained when using Kalman filter updating.

2. FLDWAYV ALGORITHM AND FEATURES
2.1 Basic Equations: The FLDWAYV model is a generalized channel flood routing model. It

is based on an implicit finite-difference solution of the conservation form of the extended Saint-
Venant equations of unsteady flow. The basic equations are:
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in which x is distance along the longitudinal axis of the waterway, t is time, Q is discharge, A
is active cross-sectional area, A, is inactive (off-channel storage) cross-sectional area, q is lateral
inflow (positive) or outflow (negative), g is the gravity acceleration constant, h is water surface
elevation, B is wetted top width of cross-section, L is the momentum effect of lateral inflow,
S¢ is friction slope, n is the Manning’s resistance coefficient, R is the hydraulic radius
approximated by (A/B), S, is the local loss slope, K, is an expansion (negative) or contraction
(positive) coefficient, W, is the wind term, C, is non-dimensional wind coefficient, V, is the
velocity of wind (V,,) relative to the velocity of the channel flow where V,, is negative if aiding
the flow, A is a coefficient for different system of units when using the Manning’s formula to
determine the resistance slope (A = 1 for the metric system of units and A = 2.21 for the
English system of units).

2.2 Algorithm of discretization: The Preissman four-point weighted, implicit finite-difference
approximation is used in FLDWAYV to transform the continuous, nonlinear partial differential
equations of Saint-Venant into nonlinear algebraic equations. Substitution of appropriate simple
algebraic approximations for the derivative and non-derivative terms in Egs. (1-2) results in two
nonlinear equations for each Ax reach between specified cross-sections. For a waterway with
N cross-sections selected, use of the above mentioned discretization algorithm to the intermediate
N-1 Ax results in 2N-2 equations:
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in which i refers to the i-th cross section in the waterway, j-1 and j denote the number of the
time line in the x-t solution domain. Knowing the stages and discharges at (j-1)-th time line,



(Q, hy, Qiiy, hyy )y, the state variables in Eq. (4) and Eq. (5) are the stages and discharges at
j-th time line (Q;, h;, Qi.y, hiyy);.

The boundary conditions at the upstream and downstream extremities of the waterway
provide two additional equations. In FLDWAV, the boundary conditions can be a known stage
hydrograph, a known discharge hydrograph, and a known relationship between stage and
discharge such as a single-value rating curve, a loop rating curve or a weir type relation.

Equations (4) and (5), together with two boundary equations, form a system of discrete,
implicit, nonlinear equatioris which define the relationship of the state variables (Q,,h,, ....
Qn,hy) between the j-th time line and the (j-1)-th time line; this can be expressed as:
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in which F is a vector of functions as defined by Eq. (4), Eq. (5), and the two boundary
equations, Y is a vector of state variables with 2N components, i.e.,
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2.3 Summary of solution technique: The Newton-Raphson functional iterative method is used
in FLDWAV to solve Eq. (6) to get Y; from known values of Y;,. The initial conditions,
Y(t=0), are automatically obtained within FLDWAYV via a steady flow backwater computation
or specified as data input for unsteady flows occurring at t=0.

In the Newton-Raphson iterative method, a system of 2N X2N linear equations are
generated and then solved. An efficient, compact, penta-diagonal, modified Gaussian elimination
matrix solution technique is used in which the computations do not involve any of the many zero
elements, thus reducing the required number of operations and required storage significantly.
This technique makes the Newton-Raphson method very efficient and provides a feasible
computational requirement for FLDWAYV which can be used on either micro-, mini, or
mainframe computers.

FLDWAYV contains an automatic procedure which adjusts the time steps to make the
iterations converge in some special situations. This enhancement increases the robust nature of
the four-point, nonlinear implicit finite-difference algorithm and is quite useful when treating
rapidly rising hydrographs in channels where the cross sections have large variations in the
vertical and/or along the x-axis.

2.4 Channel networks: Either of two algorithms can be selected in FLDWAYV for an efficient
computational treatment of channel networks.

The first, called the relaxation algorithm, is restricted to a dendritic (tree-type) network
of channels in which the main channel has any number of tributary channels joining with it.
Sometimes, dendritic systems with second order tributaries can be accommodated in the
relaxation technique by reordering the dendritic system, i.e. selecting another branch of the
system as the main channel. In the relaxation algorithm no sparse matrix is generated within
the Newton-Raphson solution technique, i.e., the matrix is always banded as it is for a single
channel reach.



The second, called the network algorithm, can be used on almost any natural system of
channels (dendritic systems having any order of tributaries; bifurcating channels such as those
associated with islands, deltas, flow bypasses between parallel channels; and tributaries joining
bifurcated channels). The network algorithm produces a sparse matrix which is solved by a
special Gaussian elimination matrix solution technique within FLDWAV.

2.5 Internal boundaries: There may be various locations (internal boundaries) along the main
channel and/or tributaries where the flow is rapidly varied and Egs. (1-2) are not applicable, e.g.
dams, bridges/road-embankments, waterfalls, short steep rapids, weirs, locks, etc. In
FLDWAYV, unsteady flows are routed along the waterway including points of rapidly varying
flow by utilizing internal boundaries. Eq. (1) can be simplified to Q; - Q;,;, = 0, and Eq. (2)
can be replaced by an empirical water elevation-discharge relation such as weir-flow. These
equations are used as internal boundary equations in those reaches where rapidly varying flow
occurs.

2.6 Special features: FLDWAYV has several special features including: a sub/supercritical
"mixed-flow" solution algorithm, levee overtopping/floodplain interactions, automatic calibration
for Manning’s n, combined free surface/pressurized flow capabilities, automatic selection of
computational time and distance steps, and options for either the metric or English system of
units.

3. EXTENDED KALMAN FILTER ENHANCEMENT OF FLDWAYV

Egs. (4-5), along with two boundary equations, form a system of discrete, implicit
nonlinear equations as represented by Eq. (6). In order to account for the uncertainties existing
in the hydraulic parameters within the equations such as the Manning’s n, boundary conditions,
and initial conditions, one can transform this deterministic dynamic system into a stochastic
dynamic system by adding Gaussian white noise processes to the equations. Eq. (6) can be
rewritten in a stochastic sense as:

F(Y,, Yt ) =W,
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in which Y is the vector of system state variables defined by Eq. (8), j refers to the state at j-th
time line (t=t), W is a Gaussian white noise vector with covariance Q, i.e.,

EW,) = 0; cov(W,,W,) = E(W,W) = Q3, (10)

where 6 is the Krnoecker operator.

Assuming that real-time on-line measurements (observations) of river water stages and/or
discharges at gaging stations along the river are available at discrete times t(j=0,1,2,....) and
the errors in the measurements are represented by white noise processes, one can derive a
system of measurement equations at the x-coordinates corresponding to the locations of gaging
stations. The measurement equations consist of a linear combination of the system state
variables, corrupted by uncorrelated noise. The measurement equations can be written in vector-
matrix notation as:



Z, = HY+V, (11)

where Z; is the set of measurements at time t, and H; is the measurement matrix at time t; it
describes the linear combination of state variables which comprise Z; in the absence of noise.
V; is the noise associated with the errors of the measurements; the statistics of the measurement
noise process are assumed as:

E(VJ) = 0; COV(Vj,Vk) = E(VjVI) = Rjajk (12)

in which R is the covariance of V.

In order to apply a linear Kalman filtering algorithm to the discrete nonlinear, implicit
dynamic system (Eq. (9)) to obtain a practical optimal estimation for Y; using updated
information (the new measurement, Z,), one can expand F in Eq. (6) in a Taylor series about
a discrete reference state trajectory to get a linearized system. Using the Preissman 4-point
implicit finite-difference solution algorithm of the FLDWAYV model, the predictive estimation
for the state variables at t=t; (denoted as Y;;;,) is obtained from Eq. (6) with Y, replaced by
the previous optimal estimation Y;,,;;. The nonlinear, implicit equation (left hand of Eq. (9))
can be linearized about Y;,;;, and Y;;;,, using the Taylor expansion and retaining only the first-
order approximation. Eq. (9) is thus transformed into the following linear stochastic system:
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The covariances of Y;" and Y;", are equal to those of Y; and Y, respectively. The real-
time estimator is thus available within FLDWAYV in this particular application of the linear
Kalman filtering algorithm. The filtering algorithm can be summarized via the following steps:

1) Based on the optimal estimation of Y at t,, (Y;,};,), a predictive estimation of Y

for the new time ¢ (Yj);.;) is computed from the FLDWAV model.

2) The covariance of this predictive estimation (P;;;,,) is computed by the following

equation:

P, =% P . & +Q, (16)
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in which P;,;, is the covariance of Yj,;.;.
3) The Kalman gain matrix for time t; is determined by the following equation:
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4) When the new measurement (Z)) is available, the predictive estimation is updated
to produce the optimal state estimation of Y for time t; (Y;;), by applying the
following equation:

Y
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4) The covariance of Y;,; is computed by the following equation:

Py = I - KiH]P, | (19)
in which I is the identity matrix.

6) Steps 1 through 5 are repeated, incrementing the time step.
4. APPLICATIONS

Figure 1 shows a schematic of a 291.7 mile reach of the Lower Mississippi River (LM)
from Red River Landing to Venice. A total of 25 cross-sections located at unequal intervals
ranging from 5 to 20 miles are used to describe the reach. The average channel bottom slope
is a very flat (0.0000064). Typical rising time of the flood waves is about 30 days. The water
stage hydrographs for the upstream and downstream boundaries are used as boundary conditions
in the simulation. The Manning’s n vs. discharge relation for each reach bounded by gauging
stations is calibrated within the FLDWAYV model using the 1969 spring flood. In this example,
a historical flood (the 1963 flood) is used to check the performance of the real-time estimator.
The accuracy of predictions of any flood routing model depends on the accuracy of the specified
boundary conditions. The performance of the real-time estimator used in a case where the
boundary conditions are not correct is presented in Figures 2-3. Figure 2 shows the observed
upstream boundary stage hydrograph and three simulated boundary conditions with errors, and
Figure 3 presents the average RMS error of six intermediate gauging stations vs. the forecasting
time with and without the Kalman filter updating. In all three cases, significant improvement
in the predictions is achieved when using the Kalman filter; the improvement increases as the
forecasting time is reduced from the 5-day to lesser lead-times.

Figure 4 is a schematic of the 130-mile reach of the lower Columbia River (C) b« -
Bonneville Dam, including the 25-mile tributary reach of the lower Willamette River. This
reach of Columbia has a very flat slope (0.000011), and the flows are affected by the tide from
the Pacific Ocean. The tidal effect extends as far upstream as the tailwater of Bonneville Dam
during periods of low flow. Reversals in discharge due to tidal effects during low flow are
possible as far upstream as Vancouver. Typical rising time in tidal fluctuations is about 6 hours.
A total of 27 cross sections with unequal intervals ranging from 0.6 to 12 miles are selected to
describe the river system. Upstream and downstream boundaries are observed discharges and
stages, respectively. The Manning n vs. water elevations relations were calibrated using
FLDWAV for a 4-day period in 1974. The real-time estimator is applied to a 2-day period in
1979. Since the flow in this reach is significantly affected by the backwater of the tide, the
model response to the accuracy of the downstream boundary condition is presented in
Figures 5-6. Figure 5 shows a period of observed stage hydrograph and two simulated boundary
conditions with different types of error. Figure 6 compares the average RMS error of four



Figure 1 Schematic of Lower Missi_ssippi (LM)
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Figure 2 Downstream Boundary (LM)
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Figure 4 Schematic of Lower Columbia (C)
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